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OBJECTIVE—NEUROD1 is expressed in both developing and
mature �-cells. Studies in mice suggest that this basic helix-loop-
helix transcription factor is critical in the development of endo-
crine cell lineage. Heterozygous mutations have previously been
identified as a rare cause of maturity-onset diabetes of the young
(MODY). We aimed to explore the potential contribution of
NEUROD1 mutations in patients with permanent neonatal
diabetes.

RESEARCH DESIGN AND METHODS—We sequenced the
NEUROD1 gene in 44 unrelated patients with permanent neona-
tal diabetes of unknown genetic etiology.

RESULTS—Two homozygous mutations in NEUROD1 (c.427_
428del and c.364dupG) were identified in two patients. Both
mutations introduced a frameshift that would be predicted to
generate a truncated protein completely lacking the activating
domain. Both patients had permanent diabetes diagnosed in the
first 2 months of life with no evidence of exocrine pancreatic
dysfunction and a morphologically normal pancreas on abdomi-
nal imaging. In addition to diabetes, they had learning difficulties,
severe cerebellar hypoplasia, profound sensorineural deafness,
and visual impairment due to severe myopia and retinal
dystrophy.

CONCLUSIONS—We describe a novel clinical syndrome
that results from homozygous loss of function mutations in
NEUROD1. It is characterized by permanent neonatal diabetes
and a consistent pattern of neurological abnormalities includ-
ing cerebellar hypoplasia, learning difficulties, sensorineural
deafness, and visual impairment. This syndrome highlights the
critical role of NEUROD1 in both the development of the
endocrine pancreas and the central nervous system in
humans. Diabetes 59:2326–2331, 2010

M
onogenic permanent neonatal diabetes
(PNDM) is typically diagnosed within the
first 6 months of birth in contrast to polygenic
autoimmune type 1 diabetes, which is usually

diagnosed later in childhood or in young adults (1,2).
PNDM is both phenotypically and genetically heteroge-
neous. Most patients present with isolated diabetes, but in
some cases diabetes appears in the context of a more
complex multisystemic syndrome. Dominant mutations
in three genes (KCNJ11, ABCC8, and INS) are the cause
of PNDM in �50% of cases, and in the majority diabetes
is an isolated finding (3,4). Recessive mutations, auto-
somal or X-linked, have been described in 10 genes
(ABCC8, GCK, EIF2AK3, FOXP3, IPF1, PTF1A, GLIS3,
SLC2A2, SCL19A2, and WFS1). These are rare and often
result in extrapancreatic features in addition to neonatal
diabetes (3). The genetic cause remains unknown in up to
40% of patients with PNDM (4).

From a pathogenetic perspective, a number of different
mechanisms can lead to PNDM. Firstly, �-cells may be
present but not functional as in patients with activating
mutations in KCNJ11 and ABCC8, the genes encoding the
two subunits of the ATP-sensitive K� channel (Kir6.2 and
SUR1, respectively). Secondly, the number of �-cells may
be reduced due to an increased destruction, either by
apoptosis (INS and EIF2AK3) or as a consequence of an
autoimmune insult (FOXP3). Finally, there may be a
reduced number of �-cells as a result of impaired pancre-
atic development, affecting either the whole pancreas
(IPF1 and PTF1A) or endocrine cells (GLIS3) specifically
(3).

Pancreatic development is coordinated by a complex
interplay of signaling pathways and transcription fac-
tors that determine early pancreatic specification as
well as the later differentiation of exocrine and endo-
crine lineages (5,6). The basic helix-loop-helix (bHLH)
transcription factor NEUROD1 (also known as BETA2)
plays an important role in the development of the
endocrine pancreas. NEUROD1 expression, along with
NEUROG3 and INSM1, specifies the endocrine lineage (7).
Neurod1�/� mice fail to develop mature islets, leading to
ketosis-prone diabetes and death within the first few days of
life (8).

Heterozygous loss-of-function mutations in NEUROD1
have previously been identified as a very rare cause of
maturity-onset diabetes of the young (MODY) and late-
onset diabetes in humans, with only five families reported
to date (9–12). We assessed the role of NEUROD1 in
PNDM and describe two unrelated probands with homozy-
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gous truncating NEUROD1 mutations who have PNDM
and similar neurological abnormalities.

RESEARCH DESIGN AND METHODS

This study was conducted in accordance with the Declaration of Helsinki. The
study protocol was approved by the local ethics committee, and written
informed consent was obtained from the parents or guardians of each patient.
Study population. We studied 44 probands with PNDM diagnosed before 6
months of age, who had been referred to the Molecular Genetics Laboratory
at the Peninsula Medical School in Exeter, U.K.. Mutations in KCNJ11,

ABCC8, INS, and GCK had been excluded. The relevant clinical information
was obtained from the medical records.
NEUROD1 gene analysis. Genomic DNA was extracted from peripheral
leukocytes using standard procedures. The single coding exon of NEUROD1

was PCR amplified in three overlapping fragments using specific primers for
each amplicon tagged with 5� M13 tails to allow sequencing to be performed
with a universal M13 primer (primers and conditions available upon request).
Single-strand sequencing was carried out using standard methods on an ABI
3730 sequencer (Applied Biosystems, Warrington, U.K.). Sequences were
compared with the published template (accession no. NM_002500) using
Mutation Surveyor (version 3.20; SoftGenetics). Sequence variants were
tested for their presence in family members whenever DNA was available.
Homozygosity mapping. High-density single nucleotide polymorphism
(SNP) genotyping was carried out on the Affymetrix human 10K Xba chip by
Medical Solutions Nottingham (formerly GeneService) (Nottingham, U.K.).
Processing of genomic DNA was performed in accordance with the Affymetrix
protocol. In-house Perl scripts were developed to automatically identify
genomic homozygous segments, defined by at least 20 consecutive homozy-
gous SNPs marking a region that exceeded 3 cM (13).

RESULTS

Molecular genetics. Two novel homozygous mutations in
NEUROD1, a single base pair duplication (c.364dupG) and a
two-base pair CT deletion (c.427_428del), were identified in
two unrelated probands. Both mutations result in a frame-
shift and a premature truncation of the C terminus of the
expressed protein (p.Asp122Glyfs*12 and p.Leu143Alafs*55,
respectively), leading to mutated proteins completely lacking
the transactivation domain (Fig. 1). These mutations had not
been previously documented and were not present in 200
alleles from healthy unrelated individuals. No mutations
were identified in the remaining 42 patients.

The two homozygous probands inherited the mutation
from their heterozygous parents (Fig. 2). In family A with the
c.364dupG mutation, parents were known to be first cousins
and, consistent with parental consanguinity, SNP genotyping
analysis of the proband revealed a total genomic homozygos-
ity value of 6.0% (13). The mutation-containing homozygous
segment was the largest homozygous segment (46.6-Mb long)
and spanned 2q31.1–2q36.1 delimited by the SNPs rs726032

to rs724149. In contrast, in family B, the parents of the patient
with the homozygous c.427_428del mutation were not known
to be related and, in keeping with this, total genomic homozy-
gosity value was very low (0.3%). However, the mutation in
both parents was inherited on an extended haplotype of 10.4
Mb between positions Chr2q31.1–32.1 (SNPs rs2884471–
rs722385), suggesting that the mutation arose from a single
common ancestor.
Clinical features. The two probands were diagnosed
with permanent diabetes within the first 2 months of life
and had presented with intrauterine growth retardation
(birth weights 1,490 and 2,230 g at 34 and 38 weeks of
gestation, respectively), reflecting reduced insulin secre-
tion in utero. They had no evidence of pancreatic exocrine
dysfunction and normal pancreatic size on abdominal
scanning (see supplementary information, available in an
online appendix [http://diabetes.diabetesjournals.org/cgi/
content/full/db10-0011/DC1]). In addition to diabetes, they
presented with a similar pattern of neurological abnormal-
ities including moderate-to-severe developmental delay,
profound sensorineural deafness, and visual impairment
due to myopia and diffuse retinal dystrophy. Brain mag-
netic resonance imaging scans showed severe cerebellar
hypoplasia with no other major intracranial abnormalities
(Fig. 3 and supplementary information). A more detailed
clinical description is given in Table 1.

There was limited availability of other family mem-
bers for genetic and clinical testing. The diabetes status,
age of diagnosis, treatment, and genetic testing result of
family members are shown in Fig. 2. We assessed
glucose tolerance in the four parents of the two pro-
bands who were proven heterozygous carriers of the
mutations. In family A (c.364dupG mutation), the
mother had been diagnosed with type 2 diabetes at 33
years, despite having a normal BMI, and was treated
with glicazide. In contrast, the father (also aged 33
years) had normal fasting (4 – 6 mmol/l) and postpran-
dial (5–7 mmol/l) blood glucose levels on several occa-
sions. In family B (c.427_428del mutation), the mother
and father underwent standard oral glucose tolerance
tests (aged 33 and 37 years, respectively) that confirmed
normal glucose tolerance (6.2 and 4.8 mmol/l, respec-
tively, at 2 h). No heterozygous family members in either
family had any developmental delay or neurological
features on clinical examination.

 bHLH domain  transactivation domain 

100 1 155 189 355 

Wild type NEUROD1  

c.364dupG 

100 1 122 134 

c.427_428del 

1 100 143 198 

FIG. 1. Schematic organization of NEUROD1 protein and effect of the two mutations on its structure. Numbers refer to the amino acids bordering
the functional domains. Both mutations result in the generation of a truncated protein lacking the transactivation domain. The abnormal protein
sequence between the frameshift and the termination codon is colored in gray.
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DISCUSSION

We report the first two cases of PNDM caused by homozy-
gous mutations in NEUROD1. The patients with this novel
autosomal recessive syndrome not only had early-onset
permanent diabetes but also presented with developmen-
tal delay, cerebellar hypoplasia, and hearing and visual
impairment. This is the 13th gene in which mutations have

been described in patients with permanent neonatal
diabetes.

NEUROD1, a tissue-specific member of the bHLH
family of transcription factors, is expressed in develop-
ing pancreatic islets and in mature �-cells. It forms a
heterodimer with the ubiquitous bHLH transcription
factor E47 that binds to specific E-box motifs on specific
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FIG. 2. Extended pedigrees of the two families showing inheritance of NEUROD1 mutations (family A, c.364dupG [A]; family B, c427_428del [B]).
Genotype is shown underneath each symbol; M and N denote mutant and wild-type alleles, respectively. Directly below the genotype is the age
of the individual at testing or the age at diagnosis of diabetes if diabetic, followed by the most recent treatment for diabetes. Subjects who were
genotyped were tested for diabetes. Squares represent male family members, and circles represent female subjects. Black-filled symbols denote
patients with neonatal diabetes, and gray-filled symbols represent patients with later-onset diabetes. A dash denotes information not applicable
or not available. An arrow denotes the proband in each family. OHA, oral hypoglycemic agents.

FIG. 3. Magnetic resonance imaging of the brain in a proband from family A demonstrating the typical neuroimaging findings of NEUROD1-PNDM.
A: Sagittal T1-weighted image. B: Coronal T2-weighted image. There is significant cerebellar hypoplasia, particularly of cerebellar vermis
inferiorly. Unusually, the posterior fossa is well formed. Supratentorial midline structures and myelination are normal.
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target genes, including INS, GCK, and ABCC8, to regu-
late their expression (14 –16). The two homozygous
NEUROD1 mutations both introduce a frameshift that
results in truncated proteins lacking the transactivation
domain, which has been shown to be important for the
interaction of NEUROD1 with its main coactivator, p300
(17). These are likely to have no biological activity, as
shown previously for a different frameshift mutation
(c.616dupC, p.His206Profs*38) identified in a patient with
NEUROD1-MODY (9). The two patients have a remarkably
consistent phenotype (Table 1), with clinical features in
keeping with the known expression and biology of this
transcription factor, and this provides further evidence
that the homozygous mutations in NEUROD1 are
causative.

Both patients have neonatal diabetes but a normal pan-
creas on scanning and no evidence of exocrine dysfunction.
This is consistent with the central role of NEUROD1 in islet
development. Mice lacking Neurod1 die shortly after
birth from severe diabetic ketoacidosis (8). Histological
examination of the Neurod1-deficient pancreas shows
an impaired islet morphogenesis with a reduction in the
number of endocrine cells— especially �-cells (8).

In addition to diabetes, our two patients presented
with a similar pattern of neurological features, including
developmental delay, cerebellar hypoplasia, and visual
and hearing impairment. This is in keeping with the
abundant expression of NEUROD1 in the developing
and mature nervous system. Interestingly, the initial
Neurod1-null mice that rapidly died from diabetes had

TABLE 2
Comparison of the major features seen in Neurod1-deficient mice (refs. 8 and 18–22) and NEUROD1-deficient patients with
homozygous NEUROD1 mutations

Mouse model Patient features

Endocrine pancreas ● Early-onset ketosis-prone diabetes ● Permanent neonatal diabetes
● Failure of mature islets development
● Striking reduction in both beta and alpha cells

Exocrine pancreas ● Postnatal-onset acinar cell polarity defects (indirect effect?) ● Normal
Enteroendocrine cells ● Lack of secretin- and cholecystokinin-producing cells

(remaining enteroendocrine cells normal)
● Not known

Cerebral cortex ● Normal ● Normal
Dentate gyrus (hippocampus) ● Seizures ● No epilepsy

● �95% decrease of granule cells
Cerebellum ● Severe hypoplasia ● Severe hypoplasia

● Impaired coordination and ataxia ● Ataxia
● Decrease of granule cells

Retina ● Blindness ● Myopia
● Decreased synapses and loss of outer nuclear layer ● Retinal dysfunction

Inner ear ● Deafness and imbalance ● Sensorineural deafness
● Shortened cochlear duct, sensory epithelia abnormalities,

and degeneration of acoustic ganglions

TABLE 1
Clinical features of the two patients with homozygous NEUROD1 mutations

Case A (c0.364dupG) Case B (c0.427_428del)

Sex Female Female
Country of origin Pakistan Hungary
Parental consanguinity Yes (first cousins) No
Birth information

Gestational age (weeks) 34 38
Birth weight (g) 1,490 2,230
Birth weight (SDS) �2.06 �1.92

Diabetes
Age at diagnosis (weeks) 8 4
Blood glucose (mmol/l) 31.8 24.0
Ketosis Yes No
C-peptide N/A Undetectable
Exocrine function Normal Normal
Pancreas size Normal (MRI scan) Normal (CT scan)
Current insulin dose (units � kg�1 � day�1) 1.1 Not known

Neurological features
Developmental delay Yes Yes
Cerebellar hypoplasia Severe cerebellar hypoplasia on MRI Severe cerebellar hypoplasia on MRI
Sensori-neural deafness Yes (hearing aids �80 dB loss�) Yes (hearing aids)
Visual impairment Severe myopia, diffuse retinal dystrophy

(ERG reduced to approx. 25%)
Moderate myopia, pigmental epithelial

atrophy and enlarged fovea
Seizures No epilepsy; two hypoglycemic seizures

(at 7 and 15 years)
No epilepsy

CT, computed tomography; ERG, electroretinography; MRI, magnetic resonance imaging; SDS, SD score.
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no obvious anatomic and histologic abnormalities of the
brain (8). However, it is possible to explore the role of
Neurod1 in the nervous system by rescuing Neurod1-
null mice either by expressing a transgene encoding the
mouse Neurod1 gene under the insulin promoter (18) or
by crossing the null mutation into a different genetic
background to reduce the severity of the diabetes (19).
The rescued Neurod1-null mice show a similar neuronal
phenotype consisting of impaired balance, ataxic gait,
circling, and swaying head movement as a result of
impaired cerebellum development (18 –20). Further-
more, rescued Neurod1-deficient mice have abnormal
hearing and vision as a result of severe sensory neuronal
defects in the inner ear and neural retina, respectively
(20 –22). The main feature seen in the mouse that was
not present in our patients was epilepsy (19). The
remarkable similarity between the NEUROD1-deficient
patients and the Neurod1-deficient mice (Table 2)
strongly supports a similar biological role of this tran-
scription factor across species.

Homozygous mutations in PTF1A, which encodes an-
other bHLH transcription factor, also cause a syndrome of
neonatal diabetes and cerebellar hypoplasia/agenesis (23).
However, in this condition the pancreatic phenotype is not
limited to the islets; affected patients have pancreatic
hypoplasia/aplasia. In keeping with the islets representing
	1% of the endocrine pancreas, the size of the pancreas
was found to be normal in our two patients with homozy-
gous NEUROD1 mutations. This suggests that shared
developmental pathways are important during develop-
ment in the pancreas and the cerebellum.

Although heterozygous loss-of-function mutations in
NEUROD1 have previously been identified as a very rare
cause of diabetes in humans (9–12), diabetes was present
in only one of four heterozygous mutation–carrying par-
ents. Their age at the time of the study ranged from 33 to
39 years and does not exclude the possibility of developing
diabetes later in life. In addition, incomplete penetrance
has been described in some of the families with NEUROD1
diabetes (9). Homozygous mutations in other known
MODY genes, namely GCK and IPF1, have previously been
associated with isolated PNDM and isolated pancreatic
agenesis, respectively (24,25). We have shown that ho-
mozygous mutations in another MODY gene are also
associated with a more severe phenotype of neonatal
diabetes.

In conclusion, homozygous mutations in NEUROD1
constitute a rare novel autosomal recessive cause of
neonatal diabetes with severe neurological abnormalities.
This confirms the important role that NEUROD1 plays in
the development of both the pancreas and the nervous
system in humans.
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